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The appearance of blood vessels is an important biomarker to distinguish diseased from healthy tissues in several
fields of medical applications. Photoacoustic microangiography has the advantage of directly visualizing blood
vessel networks within microcirculatory tissue. Usually these images are interpreted qualitatively. However, a
quantitative analysis is needed to better describe the characteristics of the blood vessels. This Letter addresses
this problem by leveraging an efficient multiscale Hessian filter-based segmentation method, and four measure-
ment parameters are acquired. The feasibility of our approach is demonstrated on experimental data and we
expect the proposed method to be beneficial for several microcirculatory disease studies.
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Imaging of microcirculatory in vivo permits the direct
visualization of long-term microhemodynamic, which is
closely associate with disease process[1,2], neural dynam-
ics[3], and functional recovery from pathological states[4].
Photoacoustic microangiography[5,6] is an innovation tech-
nique used to obtain blood vessels from biological tissues
for microcirculatory disease detection[7]. It employs a
modulated light pulse to irradiate biologic tissues. Due
to the contrast in the absorption coefficient between blood
vessels and the background medium, a high quality image
of tissue absorption properties is reconstructed by the
received ultrasound signal[8].
Photoacoustic microangiography provides the direct

visualization of blood vessels[9,10]. Usually these images
are interpreted qualitatively. Therefore, a quantitative
method for characterizing blood vessels would have sev-
eral clinical applications. Previous methods include meas-
uring blood vessel diameters[11], the flow velocity[12], and
the maximum distance to the nearest blood vessel[13]. It
is worth noting that all of these parameters are intensity
information. A parameter that can describe the vessel tor-
tuosity would be more beneficial. For example, a change in
retinal vessels is an early indicator of coronary heart dis-
ease[14] and stroke[15]. Vascular remodeling in which vessel
tortuosity plays an important role has also been of interest
in several fields[16]. Thus, four measurement parameters
are considered to give a more complete description.
In order to quantify the morphology of blood vessels, a

segmentation algorithm is needed first. The segmentation
algorithm returns a binary map of locations of vessels.
Numerous segmentation methods have been proposed
and the structure or intensity information is explored.
The simplest one is the adaptive threshold algorithm that
is based on the intensity. However, the intensity-based

techniques are very sensitive to the threshold parameter
selection while lack sensitivity to the morphology of the
blood vessels, which often leads to over segmentation.

By exploring both the shape and direction of vessels, the
Hessian filter is a good fit for multisize blood vessels[17–19].
Typically, a known range of scales is required to maximize
the vesselness function. However, if the maximum scale is
chosen large enough for the large vessels, blurriness and
enlargement of the smaller vessels will be clearly observed.

In this Letter, a multiscale Hessian filter-based algo-
rithm is proposed. The limitation of the Hessian filter
has been analyzed and corrected by a local adaptive
threshold algorithm. Additionally, the segmented binary
image is utilized to acquire four measurement parameters
to further quantify the blood vessels. Finally, the segmen-
tation and quantification method is valid on the whole and
a small area of photoacoustic microangiography to iden-
tify different tissue characteristics.

The first step of the proposed method is the segmenta-
tion progress. The algorithm we considered is based on the
multiscale Hessian filter. The multiscale Hessian filter
proposed by Frangi[20] has been widely used in many ap-
plications[21–23]. For a Hessian filter, the local behavior of
the second-order gradient image, which is called Hessian
matrix, is utilized to identify the boundaries of the blood
vessels from the background and other nonvessel tissues.
The Hessian matrix HðI Þs can be computed as

HðI Þs ¼
�
∂
∂x

��
∂
∂x

�
I ðxÞ ¼ s2γI ðxÞ � ∂2

∂x2
Gðx; sÞ; (1)

where I ðxÞ is the original image intensity at location x, γ is
the regularization parameter, and Gðx; sÞ is the Gaussian
kernel at scale s, that is
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Gðx; sÞ ¼ 1����������
2πs2

p e−
‖x‖2

2s2 : (2)

By using the convolution of the image with the Gaussian
kernels, themultiscale nature that allows for the identifica-
tion of blood vessels of different sizes has been enforced. In
other words, with a reasonable range of scales, all the blood
vessels in different sizes could be efficiently segmented.
Figure 1 shows the principle of the Hessian filter. By

analyzing the eigenvalues and the eigenvectors of the
Hessian matrix, the vessel information can be extracted.
For a 3D structure, the three eigenvalues could be
acquired and placed in the order jλ1j ≥ jλ2j ≥ jλ3j. For
an ideal vessel structure, the eigenvalues should satisfy
the following condition:

jλ3j ≈ 0; jλ3j ≪ jλ2j; λ2 ≈ λ1: (3)

In order to identify the blood vessel from the other non-
vessel tissues by the above condition, two geometric ratios
are defined as

RA ¼ jλ2j
jλ3j

; (4)

RB ¼ jλ1j���������
λ2λ3

p : (5)

The first ratio, RA, can distinguish the blob-like structure
from other tissues. Meanwhile, the second one, RB, can
distinguish between plate-like and line-like structures.
Moreover, in order to identify the blood vessels from the

background, a third ratio is introduced that is defined as

RC ¼
������������X
j≤D

λ2j

s
; (6)

where D is the dimension of the image. The ratio RC will
be very low in the background because there is no tissue
except noise.

Therefore, the vessel function at scale s is defined as

vsðxÞ ¼
8<
:

0 if λ2 < 0 or λ3 < 0�
1− e−

R2
A

2α2

�
� e−

R2
B

2β2
�
1− e−

R2
C

2θ2

�
others

;

(7)

where α, β, θ control the sensitivity to the three ratios,
respectively. The vessel function shows the probability
of the location belongs to a vessel at a certain scale.
The function is computed within multiscales and the value
of the vessel function is maximized at a scale that approx-
imately matches the vessel size,

V ðxÞ ¼ arg max
s

fvsðxÞg; s ∈ ½smin; smax�; (8)

where smin and smax are the minimum and maximum scale,
respectively.

By using the multiscale Hessian filter, different size of
blood vessels could be extracted. However, the method
is very sensitive to the maximum scale. Figures 2(a)–2(c)
show the segmentation results obtained by the multiscale
Hessian filter using different maximum scales 1, 7, and 10.
The blur and enlargement effect can be clearly observed,
especially in Fig. 2(c) for an overly large maximum scale is
used. Figures 2(d)–2(f) are the corresponding vessel diam-
eter quantification maps. The results demonstrate that
the quantified diameter is very sensitive to the segmented
results.

In order to minimize the sensitivity to the maximum
scale parameter, a local adaptive threshold method is in-
corporated. It is utilized in parallel with the multiscale
Hessian filter. The final result is acquired by compounding
these two results with a weighted average scheme,

I out ¼ α× IH þ ð1− αÞ× IT ; (9)

where I out is the final segmentation result, IH and IT are
the results obtained by the Hessian filter and local
adaptive threshold method, respectively. The weight scale
α is a scalar value between [0, 1]. As long as the com-
pounding result is not over segmentation, α should be
as small as possible.

The performance of the multiscale Hessian-based seg-
mentation algorithm is shown in Fig. 3. Figure 3(a)
shows an original photoacoustic microangiography of
microcirculation tissue beds in vivo. It is generated by
an optical-resolution photoacoustic microscopy system,
which has been reported in Ref. [24]. Figure 3(b) shows
the segmentation results using the local adaptive thresh-
old method. Here, a window size was defined to determine
the local adaptive threshold. The threshold was deter-
mined by the mean value within the window and window
size is 3 pixels. Because this method just uses the intensity
information, it will produce false segmentation. All pixels
in the image are treated equally, thus the boundary
of the vessels cannot be clearly identified. Moreover,
over segmentation will be caused by an inappropriateFig. 1. Principle of the Hessian filter.
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threshold. Figures 3(c)–3(e) show the segmented results
by the Hessian filter and the proposed method. The maxi-
mum scale used for Figs. 3(c) and 3(e) is 8, to make sure all
of the vessels in the image could be extracted, while the
value for Fig. 3(d) is 10, which is larger than the most
appropriate one. By visual comparison, it can be observed
that the results of our method are much better than the
multiscale Hessian filter. The blurring artifact and un-
wanted enlargement due to the inaccuracy choice of the
maximum scale could be appropriately solved even when
the value was selected too large.
Based on the better-segmented binary map, four

measurement parameters (fractal dimension, vessel length

fraction, vessel density, and vessel diameter) will be
quantified.

The vessel diameter is the most commonly used param-
eter. The distance transform of a blood vessel is the mini-
mumnumber of pixels between each foreground pixel to the
boundary of the vessel[25]. The results should have a maxi-
mum value on the vessel centerline. The exact vessel diam-
eter can be measured after correcting by the spatial size of
each pixel. Here, the distance transform result is used to
represent the quantified vessel diameter. Both Figs. 2(d)–
2(f) and Fig. 3(e) are quantified vessel diameter maps.

Vessel density and vessel length fraction are parameters
that represent a relative value of the total area occupied

Fig. 2. Sensitivity of the Hessian filter to the maximum scale: (a–c) segmentation results obtained by the multiscale Hessian filter using
maximum scale 1, 7, 10, and (d–f) is the corresponding vessel diameter quantification map.

Fig. 3. Performance of the multiscale Hessian-based segmentation algorithm: (a) the original photoacoustic microangiography, (b) seg-
mentation result obtained by the local adaptive threshold method, (c) segmentation result obtained by the Hessian filter, (d) segmen-
tation result obtained by the proposed method with an over-large maximum scale, (e) segmentation result obtained by the proposed
method with an appropriate maximum scale, and (f) the corresponding vessel diameter quantification map of (e).
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by the vessels and the total length of the vessels, respec-
tively[26]. The vessel density can be acquired directly on the
segmented image. It is calculated as the number of the
white pixels, which represent the total area covered by
the blood vessels, divided by the total number of images,
which represents the total area of the imaging area. The
vessel density value quantified for Fig. 3(a) is 0.59896.
For the vessel length fraction, skeletal images that re-

present the total length of the blood vessels are needed.
The skeletonization process consists of iteratively deleting
the pixels in the outer boundary of the segments until a
single pixel width line is obtained[27]. In other words, the
skeletal image can represent the centerline of the vessel.
Figure 4 shows a skeletal image of the Fig. 3(a). Therefore,
the vessel length fraction can be calculated as the number
of white pixels divided by the total number of skeletal im-
ages. The vessel length fraction quantified for Fig. 3(a) is
0.13663.
Fractal dimension is a parameter to characterize a self-

similar image[28]. A fractal dimension is a value that gives
an indication of how an image fills space into smaller
scales. Here, the parameter is utilized to quantify the
vessel turtuosity. It has been applied in diverse areas of
medicine to describe complex biological structures such
as branching patterns of the retina, coronary, and pulmo-
nary arterioles[29]. It has also been used to quantify the
fractal distribution of scatters in tissues, the parafoveal
capillary network, and optical coherence tomography
images of arteries[30].

Although the fractal dimension can be computed both
on the segmented image and the skeleton map, the result
acquired from the skeleton map is more sensitive to
changes of the vessels[31]. Thus, in this Letter, the fractal
dimension are all calculated on the skeletal image. A box
counting method is utilized to calculate the fractal dimen-
sion. It is a method of estimating the fractal dimension
from structures that are not perfectly self-similar[32]. More
importantly, the box counting method can also be used in
the quantification of the fractal dimension on a small area.
The fractal dimension value quantified for Fig. 3(a)
is 1.8734.

In the study of several microvascular phenomena, such
as angiogenesis (growth of new blood vessels), it is impor-
tant to quantify small areas of tissue. It can help us find
the location of the diseased tissues in the region of interest
(ROI). For example, regions close to tumors may present
angiogenic blood vessels (higher tortuosity and fractal
dimension) compared to the healthy surrounding blood
vessels.

For the small area quantification, the image is cropped
to create smaller ones. Therefore, the vessel length
fraction, vessel density, and fractal dimension would be
calculated over the smaller image. Additionally, there is
no extra change to quantify the vessel diameter on small
areas.

For Fig. 3(a), in order to quantify the small area, a win-
dow of a given size is used and the calculated measurement
parameter values are stored in the center pixels of the
window. By sliding the window across the whole image,
a color map can be obtained. The size of the window
was appropriately reduced at the borders of the image.
In practice, the window size should be large enough to
include one or more vessels. The window size we used here
is 8 × 8 pixels.
The vessel length fraction, vessel density, and fractal

dimension from the photoacoustic microangiography
[Fig. 3(a)] are presented in Figs. 5(a)–5(c), respectively.
For ease of visualization, the images were multiplied by
the segmented images. The edges of the image present
an artifact due to the window having smaller size. The ves-
sel diameter map is the same with the Fig. 3(e).
Two ROIs have been selected as shown in Fig. 6. Region

1 is covering large blood vessels, while Region 2 is covering
small vessels and capillaries. The mean and standardFig. 4. Skeletal image of Fig. 3(a).

Fig. 5. Small area quantification maps: (a) vessel length fraction map, (b) vessel density map, and (c) fractal dimension map.
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deviations of the parameters within the two ROIs are
presented in Fig. 7.
In general, the large blood vessels regions has larger

diameter values than the smaller ones. Figure 7(a) shows
the relative diameter values of the two regions. The vessel
length fraction and fractal dimension show smaller values
in the regions within large blood vessels compared to the

capillaries in Figs. 7(b) and 7(d). This is expected since
large vessels are fairly smooth compared to the capillaries,
which are more tortuous. Also, a few large vessels have a
smaller length compared to several small vessels covering
the same area. On the other hand, the vessel density is
slightly higher when it covers large blood vessels because
the area of the vessels covering the image is larger
(Fig. 7(c)). This agrees with the real situation.

In conclusion, a multiscale Hessian-based segmentation
and quantification method is proposed for photoacoustic
microangiography. In the proposed segmentation algo-
rithm, the blurring and enlargement that are limitations
of the Hessian filter are corrected. The results of the algo-
rithm can be utilized to get more effective measurement
parameters. The vessel diameter, vessel density, vessel
length density, and fractal dimension are quantified to
give both intensity and tortuous information of the blood
vessels. Moreover, the segmentation and quantification
method is applied on a small area within the photoacoustic
microangiography to give a quantified color map. This is
very important to properly characterize different ROIs
within an image. In the future, the proposed method
for a small area could be used to monitor the morphologi-
cal changes in regions close or far away from a diseased
region, such as a burn or cancer.
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